Automatic Relation Extraction with Model Order Selection and Discriminative Label Identification
نویسندگان
چکیده
منابع مشابه
An Improved Discriminative Category Matching in Relation Identification
This paper describes an improved method for relation identification, which is the last step of unsupervised relation extraction. Similar entity pairs maybe grouped into the same cluster. It is also important to select a key word to describe the relation accurately. Therefore, an improved DF feature selection method is employed to rearrange low-frequency entity pairs’ features in order to get a ...
متن کاملMLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection
Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...
متن کاملArtificial Neural Networks and Support Vector Machine for Voice Disorders Identification
The diagnosis of voice diseases through the invasive medical techniques is an efficient way but it is often uncomfortable for patients, therefore, the automatic speech recognition methods have attracted more and more interest recent years and have known a real success in the identification of voice impairments. In this context, this paper proposes a reliable algorithm for voice disorders identi...
متن کاملUnsupervised Feature Selection for Relation Extraction
This paper presents an unsupervised relation extraction algorithm, which induces relations between entity pairs by grouping them into a “natural” number of clusters based on the similarity of their contexts. Stability-based criterion is used to automatically estimate the number of clusters. For removing noisy feature words in clustering procedure, feature selection is conducted by optimizing a ...
متن کاملSpeaker identification using discriminative features selection
A new method of text-dependent speaker identification using discriminative feature selection is proposed in this paper. The characteristics of the proposed method are as follows: feature parameters extraction, vector quantization with the growing neural gas (GNG) algorithm, model building using gaussian distributions and discriminative feature selection (DFS) according to the uniqueness of pers...
متن کامل